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V. CONCLUSIONS 

High-frequency magnetoacoustic data have been 
obtained for both indium and lead using an automatic 
recording technique. For both metals reasonable agree
ment is obtained between the extremal dimensions of 
the Fermi surface and those obtained from the free-
electron model. The OPW model of Anderson gives an 
even better fit to the data for lead. 
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The analog to the Bloch equation for the case of thermal conduction in a superconductor limited by 
phonon scattering is derived by introducing an appropriate general form for the nonequilibrium part of the 
distribution function into the corresponding Boltzmann equation. This integral equation for the deviation 
function is solved numerically for different temperatures T by replacing it by sets of simultaneous linear 
equations with dimensions up to 39. The limiting curve for the deviation function when T approaches the 
transition temperature Tc from below turns out to be identical to the curve wrhich has been reported by 
Klemens for the normal state. With T decreasing below Tc the maximum of the deviation function rises 
and shifts to higher energies. The ratio of the thermal conductivity in the superconducting state to that in 
the normal state, K,/KM, plotted against T/Te is found to increase monotonically and to have a limiting slope 
of about 1.62 at JTC. Consideration of the energy dependence of the energy gap in the case of lead yields a 
sizable effect on the plot of KJK„ VS T/TC. 

I. INTRODUCTION 

AN outstanding feature of the experimental results 
for the electronic thermal conductivity of super

conductors is the qualitatively different behavior of 
the conductivity according to whether the dominant 
scatterers are impurities or phonons. The ratio of the 
thermal conductivity in the superconducting state to 
that in the normal state, KS/K», plotted against the 
reduced temperature, T/Tc, is found to have a zero 
slope at the transition temperature Tc if the scattering 
is predominantly by the impurities, but it is found to 
have a finite limiting slope, of about 1.6 for tin and of 
about 5 for lead and mercury, if the scattering is 
predominantly by phonons. 

Bardeen, Rickayzen, and the author1 have derived 
an expression for K8/KU on the basis of the Bardeen-
Cooper-Schrieffer microscopic theory of superconduc
tivity,2 valid when the impurity scattering limits the 
heat flux. They find excellent agreement between their 
theoretical curve and the various experimental data; 
in particular, this theory yields a zero slope of KS/KU at 
Tc. So far, the electronic thermal conductivity limited 

*This work was supported in part by the National Science 
Foundation. 

1 J. Bardeen, G. Rickayzen, and L. Tewordt, Phys. Rev. 113, 
982 (1959), hereafter referred to as BRT. 

2 J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 
108, 1175 (1957), hereafter referred to as BCS. 

by the phonons has not been understood as well. This 
problem has been treated first in BRT by setting up 
the full Boltzmann equation for the deviation in the 
distribution function of the quasi-particles from the 
equilibrium distribution. This Boltzmann equation 
takes into account the occurrence of the energy gap in 
a superconductor, the modified group velocity of the 
quasi-particle excitations, and the coherence factors in 
the matrix elements for the particle-phonon interaction. 
Lower bounds on the thermal conductivity were ob
tained by making use of Kohler's variational principle. 
One of the trial solutions which were used for the 
deviation function gave a negative slope of K5/K„ versus 
T/Tc at Tc. 

Kadanoff and Martin3 derived an approximate 
expression for KJKU by using thermodynamic Green's 
functions and introducing a finite lifetime for the 
excitations as a parameter into the theory. Their basic 
approximation consists in the replacement of the 
transport cross section by the scattering cross section. 
In evaluating their expression for K8/icn they further 
assumed that the lifetimes of a quasi-particle and a 
normal state excitation are the same and do not depend 
on the excitation energy. Under these assumptions the 
two (unknown) lifetimes drop out from the expression 
for Ks/Kn, and the temperature dependence of this ratio 

3 L. P. Kadanoff and P. Martin, Phys. Rev. 124, 670 (1961). 
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can easily be calculated. The author4 has rederived 
Kadanoff and Martin's general expression for KJKU by 
starting from the Boltzmann equation given in BRT 
and by neglecting that part of the scattering term in 
this equation which constitutes the difference between 
the transport and the scattering cross section. This 
procedure yields immediately an expression for the 
lifetime due to the interaction of the quasi-particles 
with the phonons. The same expression for the quasi-
particle lifetime has been derived also from first 
principles by employing thermodynamic Green's func
tions. The energy and temperature dependence of the 
lifetime have been calculated explicitly and have been 
considered when evaluating the integrals in the expres
sion for Ks/Kn which contain the lifetimes. The theory 
of Kadanoff and Martin, as well as the refined one of 
the author, gives fair agreement with the experimental 
data on tin reported by Guenault.5 

The assumption that in the case of thermal conduction 
a relaxation time approximation of the Boltzmann 
equation does not lead to a significant error appears to 
be plausible but is difficult to justify. In order to 
clarify the situation beyond any doubts we present 
here a calculation of the thermal conductivity limited 
by phonons within the framework of the BCS theory 
and the Boltzmann equation but which does not rest 
on further assumptions. In particular, we replace the 
relaxation time approximation by an exact numerical 
solution of the resulting integral equation for different 
temperatures. The main question we are interested in 
is whether or not the complete theory then will yield 
a positive slope of about 1.6 for the plot of KS/KU versus 
T/Tc at Tc. A positive answer to this question would 
definitely remove the puzzle which has been created 
by the use of variational solutions in BRT. I t would 
mean another important confirmation of the BCS 
theory, since the exact temperature dependence of the 
thermal conductivity depends on the details of the 
microscopic theory of superconductivity which we use. 

In Sec. I I of this work we derive the analog to the 
Bloch equation for the case of thermal conduction in a 
superconductor by introducing into the Boltzmann 
equation of BRT a general form for the nonequilibrium 
part of the quasi-particle distribution function which 
corresponds to that used for the normal state. In Sec. 
I l l we discuss the numerical procedure used to solve 
the integral equation for the deviation function, and 
we discuss the results for the deviation as a function 
of the energy and its dependence on the temperature. 
In Sec. TV we compare the calculated temperature 
dependence of KS/KH with the data on the superconductor 
tin characterized by weak electron-phonon interaction. 
Further, we discuss some modifications of the simple 
theory which we have carried out in order to solve the 

puzzle of the very large limiting slopes of /e,/jen which 
have been observed for the superconductors mercury 
and lead6 characterized by strong electron-phonon 
interaction. 

II. THE ANALOG OF THE BLOCH EQUATION 

The Boltzmann equation for the distribution function 
of quasi-particles in a temperature gradient has been 
set up in BRT. We briefly recapitulate the essential 
equations. For simplicity it is assumed here that the 
energy of a quasi-particle with momentum p is given 
b y £ p = + (ep

2+A2)1/2, where ep = (p2/2tn)-n, and where 
A = A ( r ) is the energy gap parameter of BCS which is 
a constant for the temperature T considered. The 
group velocity of a wave packet of quasi-particles 
(p,t), that is particles having momenta around p and 
a spin component parallel to the axis of quantization, is 

4 L. Tewordt, Phys. Rev. 128, 12 (1962), hereafter referred to 
as I. 

6 A. M. Gudnault, Proc. Roy. Soc. (London) A262, 420 (1961). 

pEp=(p/m)(ep/Ep). (2.1) 

Notice that v changes the direction when p crosses the 
Fermi sphere. The rate of change of the distribution 
function fp of particles (p,f) due to their drift into 
and out of a considered volume element in coordinate 
space is found to be 

V dt / d r i f t 

dT 

/pz ep\/Ep dfp\dT 

\m EJ\ T dEJ dz 
(2.2) 

The z axis is taken along the direction of the tempera
ture gradient VT. The distribution function fp is 
taken to be the equilibrium distribution, fp—f((3Ep) 
= [exp(/3E p )+l] - 1 . 

The rate of change of the deviation Afp of particles 
(p,t) from the equilibrium distribution due to the 
scattering of particles (p,f) and the destruction or 
creation of pairs of particles (p,t), (p',l) by the inter
action with the phonons can be written as 

phonon \ dEJ J 

XW(p,p')(Xp-X,-). (2.3) 

Here instead of Afp a new function Xp has been used 
which is defined by 

AfP=(-dfp/dEp)Xp. (2.4) 

The kernel of the integral operator on the right-hand 

6 J. K. Hulm, Proc. Roy. Soc. (London) A204, 98 (1950). 
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side of Eq. (2.3) is found to be 

X [ ( l + i \ 0 ( l - / ' ) 3 ( £ ' + f i - £ ) 

+N(l-f')8(E'-Q-E)~] 

ee ' -A 2 \ 

•0 EE' / 
rKl+N)f'6(E'+E-Q) . (2.5) 

In this equation the following notation has been used: 
The unprimed and primed quantities e, E, and / refer 
to arguments p and p', respectively; 0 is the phonon 
frequency for momentum q=p '— p ; N denotes the 
distribution function of the phonons which is taken 
according to B loch's approximation to be the equi
librium distribution, i.e., N = Nq= [exp(/3Qg) —1] _ 1 . 
The matrix element for the electron-phonon interaction 
is set equal to Vq. 

The Boltzmann equation, which results from the 
condition that A/ p is stationary in the presence of the 
temperature gradient, becomes, according to Eqs. (2.2) 
and (2.3), 

pz ep/ dT\ f 

)=2rPxp- / d*p' w(M')xp.. (2.6) 
m T\ dzJ J 

The quantity 2FP, defined by 

2 r 
- / * ' 

^(P,P'), (2.7) 

is just the decay rate of a quasi-particle as has been 
shown in I. One recognizes from the Eq. (2.5) for W 
that the first two terms in this expression, having 
different delta functions, correspond to the scattering 
of a particle from p to p ' with the emission or the 
absorption of a phonon =Fq, and that the third term 
corresponds to the destruction of a pair of particles 
(p,t) and (p',40 with the emission of a phonon — q. 

In I we have carried through a kind of relaxation 
time approximation of the Boltzmann equation, that 
is more exactly, we have neglected the second term on 
the right-hand side of Eq. (2.6) which, as can be seen 
from Eq. (2.3), tends to decrease the effect of the 
forward scattering. Then we were able to write down 
immediately the solution for Xp. Now we make a 
corresponding Ansatz for Xp which contains an unknown 
function g(Ep) 

* P = (pz/fn)(eP/T)(-dT/dz)g(Ep). (2.8) 

Then the sign of Xp is determined by the factor pzep in 
this expression. Thus, for positive values of pzy for 
instance, Xp will be positive above and negative below 
the Fermi surface. In Fig. 1 we illustrate the sign of 

- V T • 

FIG. 1. Schematic representation of the nonequilibrium part of 
the distribution of quasi-particles with respect to the Fermi 
sphere in the presence of a temperature gradient VT. The filled-in 
and the empty circles designate particle excess and deficiency, 
respectively. The arrows denote the direction of the group 
velocity of quasi-particles in that region, and the sign stands for 
the sign of the charge which is located in a wave packet of particles. 

Xp, and thus of A/p , with respect to the Fermi surface 
and the z direction by filled-in circles (excess) or empty 
circles (deficiency). We indicate the directions of vz 

for particles (p,f) for p above and below the Fermi 
surface in the positive as well as the negative z direction. 
One recognizes from this figure that this kind of devi
ation A/p gives rise to a net flow of energy in the 
positive z direction, while it makes the electric current 
equal to zero. The vanishing of the electric current 
can be verified from the fact that the electric charge 
which is located in a wave packet of quasi-particles 
(p,t) is equal to e(ep/Ep), as has been shown in BRT. 
This form for Xp given in Eq. (2.8) corresponds also 
to the one which one takes for the normal state. 

The thermal conductivity KS in the superconducting 
state is determined by the general formula 

9) = ( J 2jd*pvpzEpAfp. (2. 

By using the Eqs. (2.1), (2.4), and (2.8), we obtain 
from Eq. (2.9) the following expression for KS 

1 n 
K8= M 2 

2 m •f 
J A 

dE(E>- A2)^2E sech2(i0£)g(£). (2.10) 

If we insert the expression for Xp given in Eq. (2.8) 
into the Boltzmann equation [Eq. (2.6)], this goes 
over into the following integral equation for g(Ep): 

2Tpg(Ep)=l+ Up' TF(p,pO— —g(Ep>). (2.11) 
J pz €p 

The integration over p ' on the right-hand side of Eq. 
(2.11) is transformed into an integration over q = p'— p. 
We introduce polar coordinates q, #, <p, in q space 
where the polar axis is taken along the direction of p. 
If 6 and 0i are the angles between the z axis and p or 
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q, respectively, we have 

q2 = q cos#i= q(cosd cos#+sin0 sin# cos<p). (2.12) 

Since qz is the only quantity in the integrand of Eq. 
(2.11) which depends on the azimuth p, the second 
term on the right-hand side of Eq. (2.12) gives no 
contribution to this integral. Hence, the factor {pz'/p2) 
in the integrand of Eq. (2.11) gives rise to a factor 
[ 1 + ( # / # ) cost?] which can be written 

l+(q/p) CQsfi=l+(€P'-*PKf/2tn)-l-(tf/2f). (2.13) 

Since the second term on the right-hand side of this 
last equality is of the order ksT/eF, where €F is the 
Fermi energy, it can be neglected in comparison to one. 
For temperatures which are much lower than the 
Debye temperature also, the third term on the right of 
Eq. (2.13) can be neglected in comparison to one. In 
this approximation the Eq. (2.11) goes over into 

2rpg(Ep)=l+ td\ W(p, p + q ) ^ ( E p + f f ) . (2.14) 
J €p 

The integration over the q space in the integral on 
the right of Eq. (2.13) can be handled in complete 
analogy to the integration for 2TP [Eq. (2.7)]. The 
latter integration has been carried out in I. First the 
integration over sin&d& is transformed into an inte
gration over E'—Ep+q which yields, beside other 
factors, the density-of-states factor E\e\. The inte
gration over q is transformed into an integration over 
il = Qq by assuming a Debye spectrum for the phonon 
frequencies. For a fixed 0 the integration over E' can 
be carried out by making use of the delta functions in 
the expression for W(p, p + q ) from Eq. (2.5). The 
limits of the remaining 0 integrations, which depend 
on the arguments of these delta functions, have been 
determined in I. 

One important result of the investigations made in 
I is that the integration over Ef for a fixed Q, yields 
both signs of e'=€p+g. Therefore, all the terms in the 
integrand of Eq. (2.14) which are linear in e' vanish. 
If we consider now the combination of the density-of-
states factor E/ | e' |, the factor e'/e in the integrand 
of Eq. (2.14), and the coherence factors in IF given in 
Eq. (2.5), we see that the only terms in these combi
nations which contribute to the integral in question 
are the following: 

(E/\e'\)(e'/e)(±e'e/E'E) = ±\e'\/E. (2.15) 

Thus, the expressions obtained for the integral on the 
right of Eq. (2.14) will be identical to those which we 
have obtained in I for 2r p , except that the terms 
(E/\ef\)ll^(A2/EE)2 are now replaced by ± ( | e ' | / 
E)g(E). Here the upper sign corresponds to the 
scattering and the lower sign to the destruction of pairs 
of particles. If we introduce, as in the case of 21%, the 

new integration variable / and the parameters x and 
y b y 

/ = 0/A, x=Ep/A, y=A/kBT, (2.16) 

and further introduce new functions T(x) and G(x) by 

2Tp=AT(x), g(Ep) = A-Hi(%\ (2.17) 

where A is a certain constant which has been written 
down in I, then we find from Eq. (2.14) the following 
integral equation for G(x): 

T(x)G(x) = l+(l+e~yx)x-1 

x j f dtPZ(x-t)*-lJi*[l-(n'tlr1 

+ [ dtf2t(x+t)2-lj!2[eyt-l']-1 

Jo 

X[l+er*<*+<>]-1G(x+*) 

- [ dtPl(t-x)2-iyi2[l-e-»t']rl 

J x+1 

X E l + e ^ - - ^ ] - 1 ^ - * ) } . (2.18) 

The expression for T(x) can be obtained from the second 
term on the right of Eq. (2.18) by replacing ^ [ ( ^ T / ) 2 

-lJ'2G(\x-t\) by Kx^ty-iy-Wix^Ft-sr1). In de
riving Eq. (2.18) we have assumed that the matrix 
element Vq is proportional to g1/2, and we have neg
lected Umklapp processes. Thus, the integral equation 
in Eq. (2.18) constitutes the analog to the Bloch 
equation for the case of thermal conduction in a 
superconductor. 

The integral equation which corresponds to the 
normal state is obtained from Eq. (2.14) by letting A 
tend to zero. If we introduce, instead of the deviation 
function for the normal state, say, ga(*P) (which is 
even in ep), a new function Go (2), by the relation 

go(ep) = A-yG0(z), with z=ep/kBT, (2.19) 

then we obtain the following integral equation for Go(2) 

/ \\jG»(z)-(z-s)Go(z-s)l 
A) ( e ' - l ) l (e-s+e~*) 

(1+e*) 1 
+ [>Go00- (z+s)G«(z+s)'] =2. (2.20) 

(eM-tf-')l 

This integral equation can also be obtained immediately 
from the Eq. (2.18) by dropping the ones in all the 
integrals, by replacing the integration variable t by y~ls 
and the parameter x by y~lz, and further by replacing 
G(x) by fG0(z) and G(|s=F*|) by 3*Go(|3=F$|). If we 
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introduce instead of Go(z) the new function c(z) 
= —ZGQ(Z) into the Eq. (2.20), then we obtain an 
integral equation for c[z) which is seen to be identical 
to the one presented for instance by Klemens7 for the 
normal metal at temperatures T<£6. 

The ratio of the thermal conductivity in the super
conducting state, K8, to that in the normal state, /c„, 
is obtained from Eq. (2.10) and the corresponding 
equation for the normal state which arises if one lets 
the A tend to zero in Eq. (2.10). If we introduce new 
integration variables x and z instead of Ep and ep, 
respectively, and further the functions G(x) and Go(z) 
instead of g(Ep) and go(ep), respectively, we find the 
following final formula for the ratio /cs//cn: 

and the integral T (x) by 

Ks J 1 

dx x(x2~~ 1)1/2 sech*(%yx)G(x) 

(2.21) 

dzz2 sech2(iz)Go(z) 

The aim is to determine the function G(x) for a given 
temperature, that is a given value of the parameter 
y = A(T)/kBT, from its integral equation in Eq. (2.18), 
and also to determine the single function Go(z) from 
its integral equation Eq. (2.20), and finally to evaluate 
the expression given in Eq. (2.21). Then the ratio 
KJKU is obtained as a function of y. Since y can be 
written as 

y= [ A ( D / A ( 0 ) ] ( 2 V T ) [ A ( 0 ) / ^ r j , (2.22) 

one recognizes that the plot of the ratio /cs//cn versus the 
reduced temperature T/Tc depends on the value of the 
ratio A(0)/ksTo and the dependence of the ratio 
A(r) /A(0) on the reduced temperature. 

III. SOLUTION OF THE INTEGRAL EQUATION 

The integral equation in Eq. (2.18) which has been 
set up for the function G(x) determining the deviation 
of the quasi-particles from the equilibrium distribution 
at x—Ep/A(T), is easily transformed into the standard 
form of a Fredholm integral equation of the third kind. 
We obtain from Eq. (2.18) 

T(x)G(x)+ I dtK(x\t)G(t) = l, (3.1) 

where the kernel K(x\t) is given by 

Kixlt^KxixlO+Idi-xll), (3.2) 

and 

( / 2 - l ) 1 / 2 (x+ty 
# i ( * | / ) = ar1(l+*-i '*) j (3.3) 

(l+e~yt) \eyt~e~yx 

7 P. G. Klemens, Australian J. Phys. 7, 64 (1954). 

with 

T(x)= [ A [ / i ( * | / ) + / i ( - s | / ) } (3.4) 

(1+e-y) (x+tyit+x-1) 
h(x\t) = -

( / 2 - 1 ) ^ ( 1 + ^ 0 \eyt-e-vx\ 
(3.5) 

Since the kernel K(x\t) and the integrand of T(x) are 
even functions in x, one recognizes from Eq. (3.1) that 
G(x) becomes an even function in x, as it should. 

For later purposes it is useful to write down a relation 
for G(x) which is valid for large values of x and is 
obtained by means of asvmptotic expansions from the 
Eq. (3.1) 

( / 2 - l ) ^ ( * - 0 2 

dlG{t)-

G(x) = x-1-
( 1 + ^ 0 ( 1 - P-v(*-t) ) 

t(x-t)2 

dt 
i ( / 2 - i ) , / 2 ( i + e - y 0 ( i - e ~ y ( x ~ ° ) 

+ •-.. (3.6) 

The dots in Eq. (3.6) denote terms which are smaller 
by factors x~n exp(—xym)(n> 1, m>0) than the first 
term. One recognizes from this asymptotic formula 
that the exponent of the leading term in the asymptotic 
expansion of G(x), say xx, must be greater than —2, 
since for X< — 2 the right-hand side of Eq. (3.6) would 
bear out a different asymptotic behavior of G(x) than a;x. 

The analog to Eq. (3.1) which applies for the normal 
state and corresponds to the limit y — A(T)/kBT—>0 
can be obtained from Eq. (2.20). Klemens7 has solved 
this latter integral equation numerically by replacing 
it by a set of 10 simultaneous linear equations. Klemens 
result for the deviation function c(z)= — zG0(z) (with 
z=€p/ksT) turned out to be radically different from 
previously determined trial solutions, for instance, 
Sondheimers solution, and the resultant thermal con
ductivity exceeds the value derived from Sondheimers 
trial solution by 11%. 

Since obviously the variational method does not 
yield the desired accuracy which we need for our 
purposes, we have decided to solve Eq. (3.1) by a 
numerical procedure. Another reason for using a 
numerical method is that the integrand of T(x) and 
the kernel K(x \ t) are much more complicated than the 
corresponding expressions for the normal state and do 
not allow for analytic integrations. 

Since in a numerical procedure the integral in Eq. 
(3.1) which contains the unknown function G(t) under 
the integral is evaluated by means of a finite sum, for 
instance, by Simpson's rule, it seems natural to follow 
Klemens method. Thus, we replace the integral equation 
by a set of simultaneous linear equations where the 
unknowns are the discrete values of G(t) at the chosen 
equidistant points in the integration interval. A serious 
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FIG. 2. The nonequilibrium part of the quasi-particle distri
bution as a function of the energy for different temperatures. 
Plotted is zG[(sy^+l)1/2];y--3 vs z=ep/kBT for different values 
of the parameter y~A(T)/kBT. G is the solution of the integral 
equation, €p is the normal-state excitation energy, and A(T) is 
the energy gap valid for the temperature T considered. 

difficulty arises from the fact that the upper limit of 
the integral containing G{i) is infinite. If we introduce 
a cutoff, say t=a, instead of this upper limit oo, then 
we can derive easily the following upper bound for the 
absolute value of the remainder R=R(a) of the integral 
in question, provided that \G(f) \ < \G(a) \ for t>a 

| R(a) | <\G(a) | { 8 ( l - ^ t I ^ I / a [ M 3 + 3 ( a j ) 2 

+ 6 ( ^ ) + 6 ] r 4 + C 4 f ( 3 ) + 1 2 r ( 4 ) ( j a ) - 1 ] r 3 } , (3.7) 

where the symbol f denotes Riemann's f function. The 
aim is then to find for an assumed 5 « 1 a cutoff a which 
makes this upper bound for |i£(a)| smaller than 8. 

The validity of the assumption that \G(x) \ < \G(a) | 
for x>a has to be verified from the numerical solution. 
Indeed we find that G(x) decreases monotonically with 
x and behaves like x~l for large values of x. One recog
nizes that such an asymptotic behavior of G(x) is 
consistent with the asymptotic relation for G(x) which 
is given in Eq. (3.6). 

There are two kinds of errors which are introduced 
by our numerical procedure. They correspond either 
to the truncation of the integral in Eq. (3.1) at t=a or 
to the use of Simpson's rule in evaluating this integral. 
Since the dimension of the set of linear equations which 
we can use is restricted by the size of the available 
computer, we have to make an appropriate compromise 
between the requirements that a should be made as 
large as possible and that the spacing between the 
equidistant points which we use in Simpson's rule 
should be made as small as possible. In order to obtain 
estimates of the corresponding errors we have carried 
out three runs for each value of y. In the first run we 
have chosen a=ai~2Qy~l and 29 equations, and we 

0.4 0.6 
T/Tc 

FIG. 3. Theoretical curves for the ratio of the thermal conduc
tivity in the superconducting state, K8, to that in the normal 
state, Kn, vs the reduced temperature, T/Tc. The curves designated 
by BCS and Pb are calculated with a value of the ratio 2A(0)/kBTe 
equal to 3.52 and 4.1, respectively. For comparison, experimental 
results on tin and indium (Guenault), mercury (Hulm), and lead 
are included. 

find that G{x) is positive and decreases monotonically 
from x— 1 to x=ai, and that it behaves very nearly to 
x~x for # > | a i . From the Eq. (3.7) we calculate with 
the help of the numerical value for G(ai) an upper 
bound for |i£(ai)| equal to 5 = 0.01 for all values of y. 
In the second run we have chosen once more a=ai 
but 39 equations in order to estimate the error which 
is introduced by using Simpson's rule. In the third run 
we have chosen a = a 2 ~ J a i and 29 equations in order 
to obtain another estimate of the error which arises 
from the cutoff in the integral. I t turns out that the 
results for G(x) differ at the most by 1% for all the 
three runs. 

In Fig. 2 part of the results of runs 2 for the solutions 
G(x) which were computed for a number of different 
parameter values of y=A(T)/ksT are shown. In order 
to obtain a better comparison between these solutions 
and the normal-state solution we have not plotted the 
G(x)'s vs x=Ep/A(T)= (z2y~2+iyi2 but the functions 
2 G[(2 2 y- 2 +l ) 1 / 2 ] r 3 vs z=€v/kBT=y{x2-\yi\ The 
curve for zGy~z with 3;=0.03 is found on the scale of 
Fig. 2 to be the same as the one shown by Klemens for 
I c(z) J = zGo(z). The curve for zGy~z with y = 0.3 is found 
to lie very close to the one with 3/=0.03; this curve has 
been omitted for clarity. One sees from the Fig. 2 that 
the maximum of the deviation function zGy~z increases 
and shifts to higher values of z with increasing y. 

In evaluating the ratio of the thermal conductivities, 
KS/KU, with the help of the Eq. (2.21), we have calcu
lated the numerator integral numerically by using 
Simpson's rule and by introducing a cutoff. We have 
taken the cutoffs ai and a2 and the discrete values of 
G(x) which were obtained in the runs 1, 2, and 3, 
respectively. I t turns out that the resulting three values 
of the numerator integral agree within the limit of 1%. 
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The value of the denominator integral in Eq. (2.21) 
has been determined by extrapolation from the values 
of the numerator integral at y=0.3 and y=0.03 to 
y=0. In Fig. 3 we show the plots of KJK* VS the reduced 
temperature T/Tc for the two cases where the value of 
the ratio 2A(0)/kBTc is taken to be the BCS value 3.52 
(upper solid curve) and 4.1 (lower solid curve); the 
value of 4.1 lies close to most experimental values for 
this ratio which have been reported for lead. The 
dependence of A(J)/A(0) on T/TC was taken to be the 
one given by the BCS theory in both cases. For com
parison we have included in this figure also experimental 
values of KS/KU measured for tin,5 mercury, and lead.* 

IV. CONCLUSION 

One recognizes from Fig. 3 that our theoretical curve 
for K8/Kn, which is exact within the framework of the 
BCS model and the Boltzmann equation, agrees fairly 
well with the data of Guenault for very pure tin. 
Comparison of this curve with the one obtained in I 
with the help of the relaxation time approximation 
shows that this approximation, in fact, does not lead 
to a great error. Special care has been taken in our 
numerical procedure to obtain the right behavior of 
KS/KU for values of T/Tc close to one. No evidence of a 
negative limiting slope of K8/KU VS T/TC could be de
tected, but the limiting slope turns out to be about 
+ 1.62. 

From Fig. 3 one recognizes also that the theoretical 
curve for KJKU calculated with a value of the ratio 
2A(0)/&#rc equal to 4.1, which is roughly appropriate 
to lead, lies appreciably below the curve calculated 
with the BCS value 3.52 for this ratio. But this curve 
lies still far above the experimental curves for mercury 
and lead. Two other attempts have been made to 
explain the data on lead. 

In the first attempt we have determined a somewhat 
more realistic form of the matrix element Vq for the 
electron-phonon interaction. The largest corrections to 
the Bloch form we used before, i.e., Vq <x g1/2, are found 
to come from the Umklapp processes and the inter
ference factor.8 The effective matrix element for the 
Umklapp processes has been calculated by using the 
approximation method of Ziman.8 But we find that in 

• See J. M. Ziman, Electrons and Phonons (Clarendon Press, 
Oxford, 1960). 

the case of lead the additive effect of the Umklapp 
processes is largely compensated for by the reduction 
of the matrix element for the normal processes due to 
the interference factor. The effect of any finer details 
in the behavior of Vq on KJKU is expected to be small 
since Vg occurs in both expressions for K8 and /cn. 

Schrieffer and co-work rs9 have suggested that the 
maximum they find in the energy gap when considered 
as a function of the energy might affect transport 
properties of superconductors. Accordingly, in our 
second investigation we have introduced in all the 
relevant expressions of above work the modifications 
which result from an energy dependence of the gap. 
First, the density-of-states functions occurring in all 
the integrals are modified. Second, the terms with 
A2/EE' in the coherence factors of the particle-phonon 
interaction matrix element [see Eq. (2.5)] are modified. 
We have calculated Ks/icn for various temperatures by 
taking into account the corresponding corrections due 
to those A(E) curves, in the work of Schrieffer et aL, 
which are roughly appropriate to the case of lead. It 
turns out that the correction for C= 0.5 (see reference 9) 
lowers the Pb curve in Fig. 3 by approximately the same 
amount as the difference between the BCS curve and 
the Pb curve. 

Thus, it seems that the large limiting slopes of Ks/Kn 

measured for lead and mercury cannot be explained 
completely within the scope of the BCS model and the 
conventional Boltzmann equation approach. Since the 
Boltzmann equation is limited to weak interaction, 
while the electron-phonon interaction in lead and mer
cury is very strong, we try to solve the problem by 
means of the more general method of thermodynamic 
Green's functions.10 
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